Name:

- 1. Consider the functions shown below.

 - c) Which function is decreasing at the fastest rate?

What is the decay rate for this function?

- 2. Fred and Wilma purchase a home for \$180,000. Using function notation, write a formula for the value, *V*, of the house *t* years after its purchase, assuming that the value
 - a) Decreases by \$1,500 per year. b) Decreases by 2% per year.

c) Increases by \$3,100 per year. d) Increases by 6% per year.

Lesson 6 – More Exponential Functions

Years since purchase	Value in Dollars
0	22,425
1	17,956
2	15,218
3	12,749
5	8,860
8	5,311

3. The following data set gives the value, V, of a car after *t* years.

- a) Determine an exponential regression equation of the form $V(t) = ab^t$ for this data set. Round the "*a*" value to the nearest whole number and the "*b*" value to three decimals.
- b) Use the regression equation from part a to predict the value of the car after 12 years. Round your answer to the nearest cent. Write your answer in a complete sentence.

c) How long until the car is worth half of its original value? Round your answer to the nearest hundredth. Write your answer in a complete sentence.

d) How long will it take for the car's value to reach \$1000? Round your answer to the nearest hundredth. Write your answer in a complete sentence.

e) Based on the regression equation, at what percent rate is the car's value decreasing each year?