Unit 7: Introduction to Functions

- Section 7.1: Relations and Functions
- Section 7.2: Function Notation
- Section 7.3: Domain and Range
- Section 7.4: Practical Domain and Range
- Section 7.5: Applications

KEY TERMS AND CONCEPTS					
Look for the following terms and concepts as you work through the Media Lesson. In the space below, explain the meaning of each of these concepts and terms <i>in your own words</i> . Provide examples that are not identical to those in the Media Lesson.					
Relation					
Function					
Vertical Line Test					
Dependent Variable					
Independent Variable					

Behavior of Functions	
Function Notation	
Compare: Find $f(4)$ Find x when $f(x) = 4$	
Domain	
Range	
Practical Domain	
Practical Range	

Unit 7: Media Lesson

Section 7.1: Relations and Functions

Definitions

A **RELATION** is any set of ordered pairs.

A FUNCTION is a relation in which every input value is paired with exactly one output value

Table of Values One way to represent the relationship between the input and output variables in a relation or function is by means of a table of values.

Ka	ample 1: V	Which of the	follow	ving tables r	epresent fu
	Input	Output		Input	Output
	1	5		1	8
	2	5		2	_9
	3	5		3	7
	4	5		3	12
			-		

Ex functions?

2	4
1	-5
4	10
-3	-87

Output

No

Input

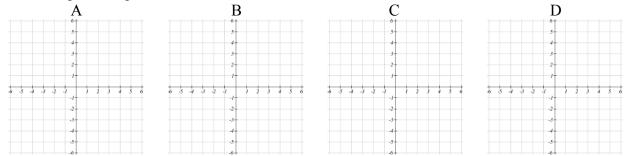
Yes

Ordered Pairs

No

A relations and functions can also be represented as a set of points or ordered pairs.

Yes


Example 2: Which of the following sets of ordered pairs represent functions?

$$A = \{(0, -2), (1, 4), (-3, 3), (5, 0)\}$$
$$B = \{(-4, 0), (2, -3), (2, -5)\}$$
$$C = \{(-5, 1), (2, 1), (-3, 1), (0, 1)\}$$
$$D = \{(3, -4), (3, -2), (0, 1), (2, -1)\}$$
$$E = \{(1, 3)\}$$

No

Yes

Example 3: On the graphs below, plot the points for A, B, C, and D from Example 2, then circle the "problem points"

The Vertical Line Test

- If all vertical lines intersect the graph of a relation at no more than one point, the relation *is* also a function. One and only one output value exists for each input value.
- If any vertical line intersects the graph of a relation at more than one point, the relation "fails" the test and is NOT a function. More than one output value exists for some (or all) input value(s).

Example 4: Use the Vertical Line Test to determine which of the following graphs are functions.

Behavior of Graphs

Increasing	Decreasing	Constant

Dependent and Independent Variables

In general, we say that the output **depends** on the input.

Output variable = **Dependent Variable**

Input Variable = **Independent Variable**

If the relation is a function, then we say that the output **is a function of** the input.

Section 7.1 – You Try

Is it a function? Circle "Yes" or "No" for each of the following.

Yes or No

or No

Yes or No

Yes or No

	6			
	5			
	4			
	2			
	/-			
				_
6 -5 -4	-3 -2 -1	1 2	3 4	56
	-/-			
	2			
	~			
	-3-			
	-4			
	-5-			

Input	Output
4	12
6	14
8	14
10	16

(2, -3), (-5, 2), (-3, 1)

Section 7.2: Function Notation: f(input) = output

If a relation is a function, we say that the *output is a function of the input*.

Function Notation: f(input) = output

Example: If y is a function of x, then we can write f(x) = y.

Example 1: The function V(m) represents value of an investment (in thousands of dollars) after *m* months. Explain the meaning of V(36) = 17.4.

Example 2:

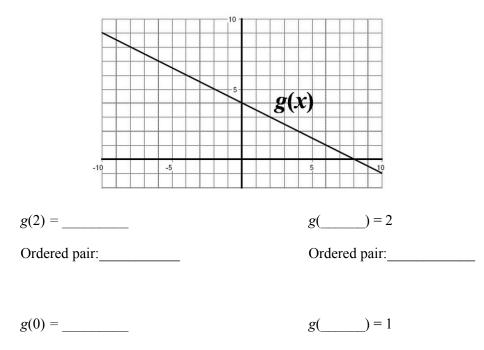
Ordered Pair (input, output)	Function Notation $f(input) = output$
(2, 3)	f(2) = 3
(-4, 6)	f()=
(,)	f(5) = -1

Example 3: Consider the function: $f = \{(2, -4), (5, 7), (8, 0), (11, 23)\}$

 $f(5) = _____ f(____) = 0$

Table of Values

Example 4: The function B(t) is defined by the table below.


t	1	3	12	18	22	31
B(t)	70	64	50	39	25	18

 $B(12) = _$ B(t) = 18 when $t = _$

D(t) = 10 when t =____

Graph

Example 5: Consider the graph g(x) of shown below

Ordered pair:_____

Ordered pair:_____

Section 7.2 – You Try

Complete the problems below.

a. Complete the table.

Ordered Pair	Function Notation
(8, 1)	f()=
(,)	f(0) = 11

b. The function k(x) is defined by the following table

x	-2	-1	0	1	2	3	4
k(x)	8	2	-9	4	6	1	0

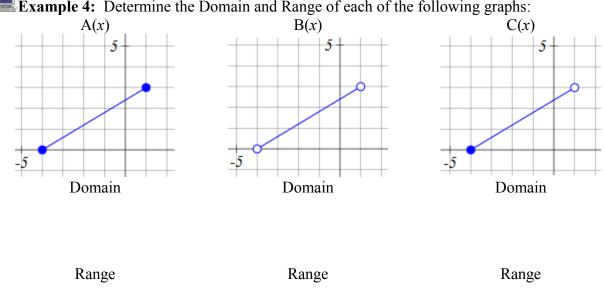
k(2) = _____

k(x) = 1 when x =

Ordered Pair:

Ordered Pair:

c. At an ice cream factory, the total cost production is a function of the number of gallons of ice cream produced. The function C(g), gives the cost, in dollars, to produce g gallons of ice cream. Explain the meaning of C(580)=126 in terms of ice cream production.


Section 7.3: Domain and Range

DEFINITIONS

The **DOMAIN** of a function is the set of all possible values for the **input** variable.

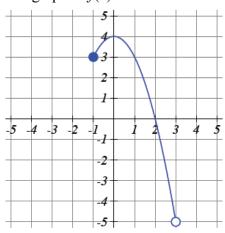
The **RANGE** of a function is the set of all possible values for the **output** variable.

	DOMAIN	AND RAN	GF		
Example 1 : Consider the f			0L		
x -2		2	4	6	
k(x) 3	-7	11	3	8	
Input values					
Domain: {					
Output values:					
Range: {			}		
Example 2 : Consider the fi				(11, 23)}	
Input values					
Domain: {					
Output values:					
Range: {			_}		
Example 3: Consider the g	raph of $f(x)$ sh	own below	f(x)	 10	
Domain:		$\leq x \leq $			
Range: _		$\leq f(x) \leq$			

Example 4: Determine the Domain and Range of each of the following graphs:

SECTION 7.3 – YOU TRY

Determine the Domain and Range of the functions below.


a.

Input	Output
4	12
6	12
8	12
10	12

Domain:

Range:

b. The graph of f(x) is shown below

Domain:

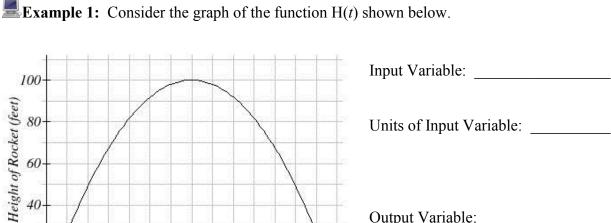
Range:

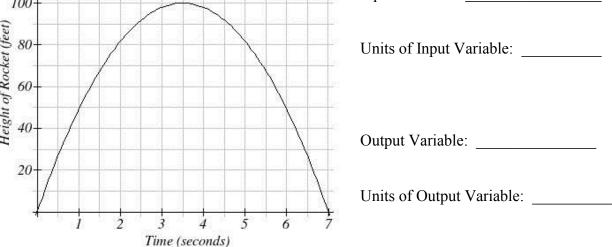
Section 7.4: Practical Domain and Range

	Definitions
make sense in a given situa	function is the set of all possible values for the output variable <i>that</i>
in dollars, to fill up your ca tank can hold a maximum	tation is currently charging \$3.83 per gallon for gas. The cost, $C(n)$, ar depends on the number of gallons, <i>n</i> , that you pump. Your car's of 20 gallons of gas.
b. The <i>practical</i> doma	ain of this function is
d. The <i>practical</i> range	e of this function is

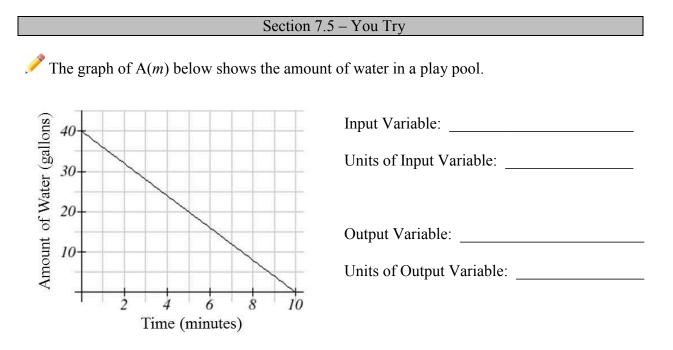
Section 7.4 – You Try

 \checkmark The platform for the high dive is 35 feet above the water. A diver jumps from the platform and lands in the water after 1.5 seconds. The function H(*s*) represents the height of the diver after *s* seconds.


a. In this situation, the input variable is ______.


b. The *practical* domain of this function is ______.

c. The output variable in this situation is ______.


d. The *practical* range of this function is ______.

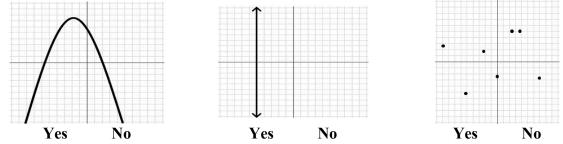
Section 7.5: Applications

- a. Interpret the meaning of the statement H(5)=82.
- b. Determine H(7). Write it as an ordered pair and interpret its meaning in a complete sentence.
- c. Determine t when H(t) = 50. Write it as an ordered pair and interpret its meaning in a complete sentence.
- d. Determine the maximum height of the rocket.
- e. Determine the practical domain for H(t).
- f. Determine the practical range for H(t).

- a. Interpret the meaning of the statement A(3)=28.
- b. Determine A(5). Write it as an ordered pair and interpret its meaning in a complete sentence.
- c. Determine t when A(m) = 0. Write it as an ordered pair and interpret its meaning in a complete sentence.
- d. Describe what is happening to the water in the pool. (Is the pool being filled or drained?)
- e. Determine the practical domain for A(m). Use inequality notation and include units.
- f. Determine the practical range for A(m). Use inequality notation and include units.

Unit 7: Practice Problems

Skills Practice


1. Are these functions? Circle yes or no.

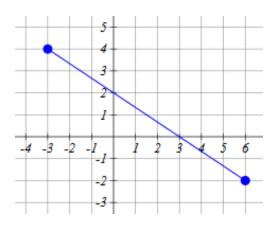
Input	Output	Input	Output	Input	Output
3	12	1	8	2	4
7	12	2	-9	1	-5
4	12	3	7	4	10
2	12	3	12	-3	-87
Yes	No	Yes	No	Yes	No

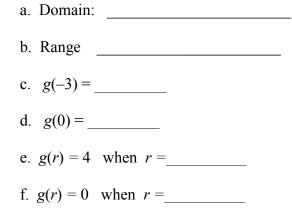
2. Are these functions? Circle yes or no.

a. $\{(2, -4), (6, -4), (0, 0), (5, 0)\}$	Yes	No
b. $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$	Yes	No
c. $\{(1, -8), (5, 2), (1, 6), (7, -3)\}$	Yes	No

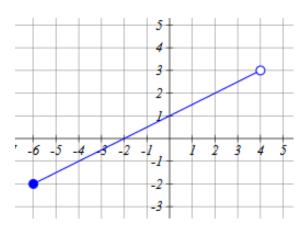
3. Are these functions? Circle yes or no.

4. In the space below, draw a graph that represents a function, and a graph that does NOT represent a function.

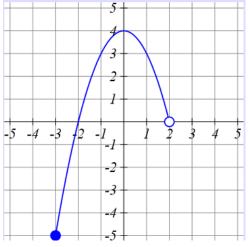

Function	Not a Function

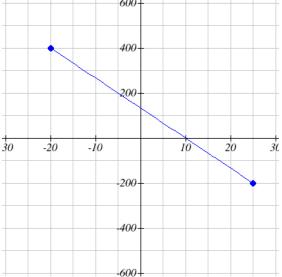

5.	The function	r(x) is	defined	by the	following	table of	f values.	

5.	$\begin{array}{c c} x & 3 \\ \hline r(x) & -9 \end{array}$	5 6	9 13 2 1		
	a. $r(9) = $		b. r(3) =		
	c. $r(___) = 1$		d. <i>r</i> () = 3	
	e. The domain of $r(x)$ is {				}
	f. The range of $r(x)$ is $\{$				}
6.	Consider the function $g = \{(2, 5), (0, 3)\}$, 6), (5, 8), (-	-3, 7)}		
	a. g(0) =		b. g(5) =		
	c. $g(___) = 7$		d. g() = 5	
	e. The domain of g is $\{$ _				}
	f. The range of g is $\{$				_}
7.	Given $f(4) = 8$, $f(3) = 11$, $f(0) = 6$				
	a. The domain of f is $\{$				}
	b. The range of f is $\{$				}

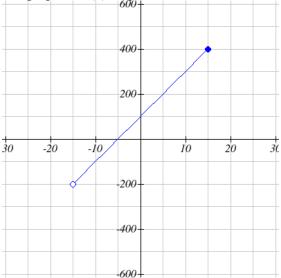

c. Write the function f as a set of ordered pairs.

8. The graph of g(r) is given below.

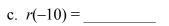



9. The graph of A(m) is given below.

10. The graph of p(t) is given below.



11. The graph of f(n) is given below.



- a. Domain: _____
- b. Range
- c. f(-5) =_____
- d. f(n) = 0 when n =_____

12. The graph of r(x) is given below.

- a. Domain: _____
- b. Range

d. r(x) = 300 when x =_____

Applications

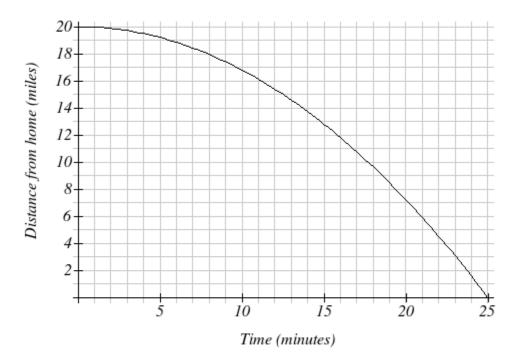
13. A rock is dropped from the top of a building. The function H(t) gives the height (measured in meters) of the rock after *t* seconds. In a complete sentence, explain the meaning of the statement H(2) = 35. Your answer must include correct units.

14. The function P(n) represents a computer manufacturer's profit, in dollars, when *n* computers are sold. In a complete sentence, explain the meaning of the statement P(40) = 1680. Your answer must include correct units.

15. The function E(t) gives the surface elevation (in feet above sea level) of Lake Powell *t* years after 1999. In a complete sentence, explain the meaning of the statement E(5) = 3675. Your answer must include correct units.

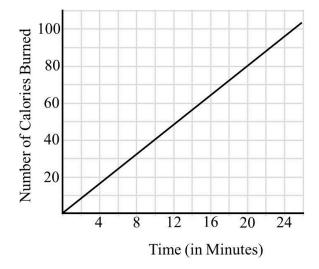
16. The function V(n) gives the value, in thousands of dollars, of an investment after *n* months. In a complete sentence, explain the meaning of the statement V(24) = 18. Your answer must include correct units.

17. The function P(t) can be used to approximate the population of a town, in thousands of people, *t* years after 1980. In a complete sentence, explain the meaning of the statement P(31) = 52. Your answer must include correct units.


18. A candy company has a machine that produces candy canes. The table below is a partial list of the relationship between the number of minutes the machine is operating and the number of candy canes produced by the machine during that time period.

Minutes t	3	5	8	12	15
Candy Canes C(t)	12	20	32	48	60

- a. Include units. C(12) =
- b. In a complete sentence and including all appropriate units, explain the meaning of your answer in part a.
- c. Include units. C(t) = 12 when t =_____
- d. In a complete sentence and including all appropriate units, explain the meaning of your answer in part c.
- e. This function is (circle one) increasing decreasing
- f. Construct a properly scaled and labeled graph C(t).


.....

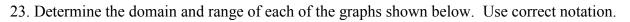
19. The function D(t) is shown below.

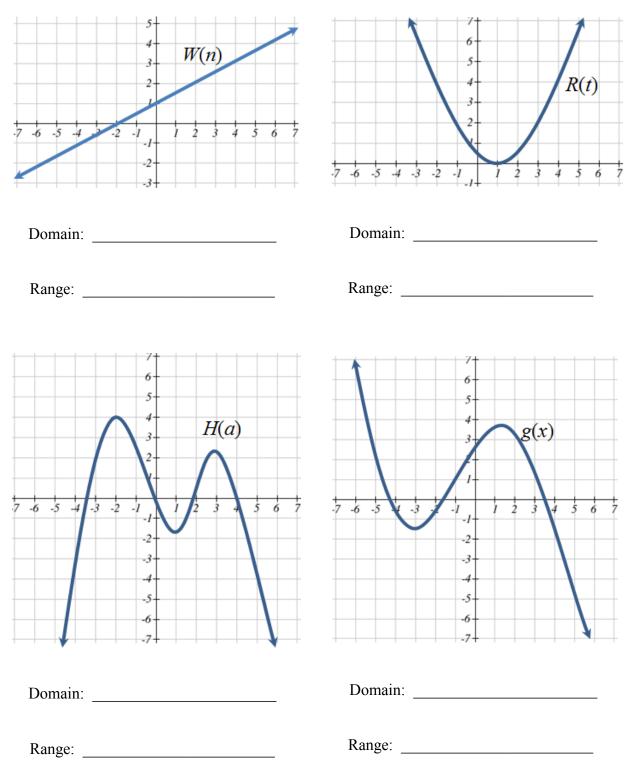
- **a.** Determine D(0) and interpret its meaning in a complete sentence.
- **b.** Determine D(8) and interpret its meaning in a complete sentence.
- **c.** For what value of t is D(t) = 3? Write a sentence explaining the meaning of your answer.
- **d.** For what value of t is D(t) = 0? Write a sentence explaining the meaning of your answer.
- e. Determine the practical domain of D(t).
- **f.** Determine the practical range of D(t).

20. The graph of the function C(n) below shows the number of calories burned after riding a stationary bike for *n* minutes.

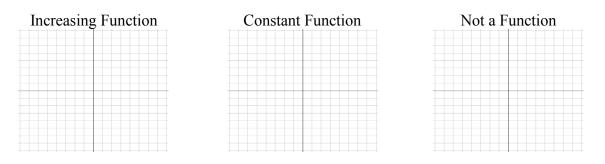
- a. Is this function increasing or decreasing?
- b. Interpret the meaning of the statement C(8) = 32.

c. Determine C(10) and interpret its meaning in a complete sentence.

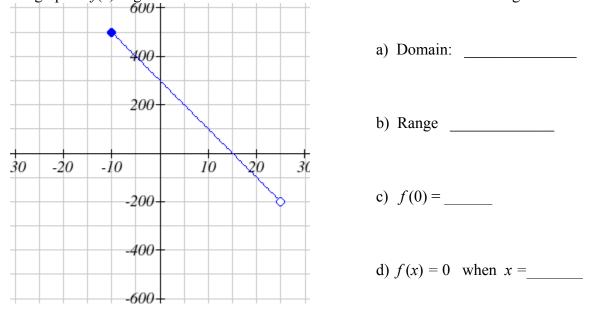

d. For what value of *n* is C(n) = 80? Write a sentence explaining the meaning of your answer.


Extension

21. Sort the following terms into the two groups below.


- 22. In a relation, we say that the output **depends** on the input. If the relation is a function, then we say that the output **is a function of** the input. For each of the following, identify the input variable and the output variable, and then determine if the relation is a function.
 - a. Is the outside temperature in Tempe, AZ a function of the time of day?

	Input Variable:
	Output Variable:
	Function? Yes No
b.	Is your letter grade a function of your numerical grade in the class?
	Input Variable:
	Output Variable:
	Function? Yes No
c.	Is your numerical grade a function of your letter grade?
	Input Variable:
	Output Variable:
	Function? Yes No

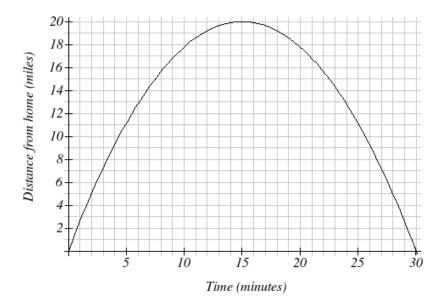


1. In the space below, draw a graph that represents an increasing function, a constant function, and a graph that does NOT represent a function.

2. The graph of f(x) is given below. Use interval notation for the domain and range.

3. Consider the following table of values. Fill in the blanks below, and identify the corresponding ordered pairs.

x	-2	-1	0	1	2	3	4
g(x)	1	4	8	6	5	0	2


g(1) = _____

g(x) = 1 when x = _____

Ordered pair: _____

Ordered Pair:

4. The function D(t) shown below represents Sally's distance from home over a 30-minute time period.

- a. Identify the vertical intercept of D(t). Write it as an ordered pair and explain its meaning in this situation.
- b. Identify the horizontal intercepts of D(t). Write them as an ordered pairs and explain their meaning in this situation.
- c. Determine D(15) and interpret its meaning in a complete sentence.
- **d.** For what value of t is D(t) = 5? Write a sentence explaining the meaning of your answer.
- e. Determine the practical domain of D(t).
- **f.** Determine the practical range of D(t).